Sasaki–Einstein Manifolds and Volume Minimisation
نویسندگان
چکیده
We study a variational problem whose critical point determines the Reeb vector field for a Sasaki–Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein–Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi–Yau cone X, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat– Heckman formula and also to a limit of a certain equivariant index on X that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of a Sasaki–Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n = 3 these results provide, via AdS/CFT, the geometric counterpart of a–maximisation in four dimensional superconformal field theories. We also show that our variational problem dynamically sets to zero the Futaki invariant of the transverse space, the latter being an obstruction to the existence of a Kähler–Einstein metric.
منابع مشابه
Hidden Symmetries of Euclideanised Kerr-NUT-(A)dS Metrics in Certain Scaling Limits
The hidden symmetries of higher dimensional Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein–Sasaki ones. The complete set of Killing–Yano tensors of the Einstein–Sasaki spaces are presented. For this purpose the Killing forms of the Calabi–Yau cone over the Einstein–Sasaki manifold are constructed. Two new Killing forms on Einstein–Sa...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملKilling Forms on Toric Sasaki - Einstein Spaces ∗
We summarize recent results on the construction of Killing forms on SasakiEinstein manifolds. The complete set of special Killing forms of the Sasaki-Einstein spaces are presented. It is pointed out the existence of two additional Killing forms associated with the complex holomorphic volume form of Calabi-Yau cone manifold. In the case of toric Sasaki-Einstein manifolds the Killing forms are ex...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملTransverse Kähler Geometry of Sasaki Manifolds and Toric Sasaki-einstein Manifolds
In this paper we study compact Sasaki manifolds in view of transverse Kähler geometry and extend some results in Kähler geometry to Sasaki manifolds. In particular we define integral invariants which obstruct the existence of transverse Kähler metric with harmonic Chern forms. The integral invariant f1 for the first Chern class case becomes an obstruction to the existence of transverse Kähler m...
متن کامل